Hemijska Industrija (Jan 2011)
Fluoride sorption using Cynodon dactylon based activated carbon
Abstract
This study deals the application of Cynodon dactylon based thermally activated carbon for fluoride toxicity. The batch adsorption techniques was followed at neutral pH as the functions of contact time, adsorbent dose, adsorbate concentration, temperature and the effect of co-anions. The data indicate that the prepared adsorbent surface sites are heterogeneous in nature and that fits into a heterogeneous site-binding model. The present system followed the Redlich-Peterson isotherm as well as Langmuir adsorption isotherm model. Lagergren pseudo-first-order, pseudo-second-order, intra particle diffusion and Elovich kinetics were modeled to describe the adsorption rate of fluoride and determined as this scheme followed pseudo-second-order kinetics. The calculated enthalpy change, ΔH°, and entropy change, ΔS°, for the adsorption process are +8.725 kJ/mol and +0.033 J/mol K respectively and shows endothermic experience. Instrumental analysis of XRD, FTIR and SEM gives the idea about the fluoride binding ability of adsorbent.
Keywords