In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

Role of MAPKs in HSP70’s Protection against Heat Stress-Induced Injury in Rat Small Intestine

BioMed Research International. 2018;2018 DOI 10.1155/2018/1571406

 

Journal Homepage

Journal Title: BioMed Research International

ISSN: 2314-6133 (Print); 2314-6141 (Online)

Publisher: Hindawi Limited

LCC Subject Category: Medicine

Country of publisher: United Kingdom

Language of fulltext: English

Full-text formats available: PDF, HTML, ePUB, XML

 

AUTHORS


Yue Hao (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

Yuejin Feng (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

Jielei Li (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

Xianhong Gu (State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

EDITORIAL INFORMATION

Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 19 weeks

 

Abstract | Full Text

Aim. To evaluate the role of heat shock protein 70 (HSP70) on the MAPK pathway activation with quercetin treatment and its protection against small intestine impairments of heat stressed rats. Methods. Forty-eight male Sprague-Dawley rats aged 6 weeks were randomized to three groups (n=16/group), namely, control (CON), heat stress (HS), and heat stress + quercetin (HQ). The experiment lasted for 14 days with daily 50 min of heat stress treatment (43°C) for the HS and HQ groups. Rats of HQ group were intragastrically given 0.5 ml quercetin solution (50 mg/kg body weight) before the heat stress treatment. Half of the animals were sacrificed on day 7 and the rest on day 14 for tissue sampling. Intestinal morphology, small intestine morphology and permeability, protein expression of HSP70, phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and caspase-3 activity were examined. Results. Heat stress caused morphological damage to the small intestine and increased intestinal permeability. HSP70 expression and MAPK activity in the small intestine were increased by heat stress. Inhibition of HSP70 by quercetin did not change intestinal permeability compared with the HS group but aggravated intestinal injury and affected the activation of MAPKs and caspase-3. Conclusions. HSP70 may modulate stress-activated signaling and acts in a protective manner via MAPK signaling. Affecting HSP70 protective mechanisms could be useful for protection against heat stress-induced injury in rat small intestine.