Energies (Jul 2020)

Comparative Analysis of BIPV Solutions to Define Energy and Cost-Effectiveness in a Case Study

  • Paolo Corti,
  • Luisa Capannolo,
  • Pierluigi Bonomo,
  • Pierluigi De Berardinis,
  • Francesco Frontini

DOI
https://doi.org/10.3390/en13153827
Journal volume & issue
Vol. 13, no. 15
p. 3827

Abstract

Read online

The built environment remains a strategic research and innovation domain in view of the goal of full decarbonization. The priority is the retrofitting of existing buildings as zero-emission to improve their energy efficiency with renewable energy technologies pulling the market with cost-effective strategies. From the first age of photovoltaics (PV) mainly integrated in solar roofs, we rapidly moved towards complete active building skins where all the architectural surfaces are photoactive (Building Integrated Photovoltaics - BIPV). This change of paradigm, where PV replaces a conventional building material, shifted the attention to relate construction choices with energy and cost effectiveness. However, systematic investigations which put into action a cross-disciplinary approach between construction, economic and energy related domains is still missing. This paper provides the detailed assessment of a real multifamily building, taking into account retrofit scenarios for making active the building skin, with the goal to identify the sensitive aspects of the energetic and economic effectiveness of BIPV design options. By assuming a real case study with monitored data, the analysis will consider a breakdown of the main individual parts composing the building envelope, by then combining alternative re-configurations in merged clusters with different energy and construction goals. Results will highlight the correlation between building skin construction strategies and the energy and cost parameters by identifying the cornerstones for enhancing efficiency. The outcomes, related to the total life cost, self-consumption/sufficiency, in combination with different building design options (façade, roof, balconies, surface orientations, etc.), provide a practical insight for researchers and professionals to identify renovation strategies by synergistically exploiting the solar active parts towards lower global costs and higher energy efficiency of the whole building system.

Keywords