Journal of Infection and Public Health (Dec 2023)
Benzalkonium chloride forces selective evolution of resistance towards antibiotics in Salmonella enterica serovar Typhimurium
Abstract
Background: Although food-grade disinfectants are extensively used worldwide, it has been reported that the long-term exposure of bacteria to these compounds may represent a selective force inducing evolution including the emergence of antibiotic resistance. However, the mechanism underlying this correlation has not been elucidated. This study aims to investigate the genomic evolution caused by long-term disinfectant exposure in terms of antibiotic resistance in Salmonella enterica Typhimurium. Methods: S. Typhimurium isolates were exposed to increasing concentrations of benzalkonium chloride (BAC) and variations of their antibiotic susceptibilities were monitored. Strains that survived BAC exposure were analyzed at whole genome perspective using comparative genomics, and Sanger sequencing-confirmed mutations in ramR gene were identified. Next, the efflux activity in ramR-mutated strains shown as bisbenzimide accumulation and expression of genes involved in AcrAB-TolC efflux pump using quantitative reverse transcriptase PCR were determined. Results: Mutation rates of evolved strains varied from 5.82 × 10−9 to 5.56 × 10-8, with fold increase from 18.55 to 1.20 when compared with strains evolved without BAC. Mutations in ramR gene were found in evolved strains. Upregulated expression and increased activity of AcrAB-TolC was observed in evolved strains, which may contribute to their increased resistance to clinically relevant antibiotics. In addition, several indels and point mutations in ramR were identified, including L158P, A37V, G42E, F45L, and R46H which have not yet been linked to antimicrobial resistance. Resistance and mutations were stable after seven consecutive cultivations without BAC exposure. These results suggest that strains with sequence type (ST) ST34 were the most prone to mutations in ramR among the three STs tested (ST34, ST19, ST36). Conclusions: This work demonstrated that disinfectants, specifically BAC forces S. Typhimurium to enter a specific evolutionary trajectory towards antibiotic resistance illustrating the side effects of long-term exposure to BAC and probably also to other disinfectants. Most significantly, this study provides new insights in understanding the emergence of antibiotic resistance in modern society.