Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions
Miguel J. Vivas-Cortez,
Artion Kashuri,
Rozana Liko,
Jorge E. Hernández Hernández
Affiliations
Miguel J. Vivas-Cortez
Escuela de Ciencias Físicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076. Apartado, Quito 17-01-2184, Ecuador
Artion Kashuri
Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, L. Pavaresia, Vlora 1001, Vlore, Albania
Rozana Liko
Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, L. Pavaresia, Vlora 1001, Vlore, Albania
Jorge E. Hernández Hernández
Departamento de Técnicas Cuantitativas, Decanato de Ciencias Económicas y Empresariales, Universidad Centroccidental Lisandro Alvarado, Av. 20. esq. Av. Moran, Edf. Los Militares, Piso 2, Ofc.2, Barquisimeto 3001, Venezuela
In this work, a study is conducted on the Hermite−Hadamard inequality using a class of generalized convex functions that involves a generalized and parametrized class of special functions within the framework of quantum calculation. Similar results can be obtained from the results found for functions such as the hypergeometric function and the classical Mittag−Leffler function. The method used to obtain the results is classic in the study of quantum integral inequalities.