Applied Sciences (May 2022)

An Edible, Decellularized Plant Derived Cell Carrier for Lab Grown Meat

  • Richard Thyden,
  • Luke R. Perreault,
  • Jordan D. Jones,
  • Hugh Notman,
  • Benjamin M. Varieur,
  • Andriana A. Patmanidis,
  • Tanja Dominko,
  • Glenn R. Gaudette

DOI
https://doi.org/10.3390/app12105155
Journal volume & issue
Vol. 12, no. 10
p. 5155

Abstract

Read online

Rapidly expanding skeletal muscle satellite cells with cost-effective methods have been presented as a solution for meeting the growing global demand for meat. A common strategy for scaling cell proliferation employs microcarriers, small beads designed to support anchorage-dependent cells in suspension-style bioreactors. No carrier has yet been marketed for the cultivation of lab-grown meat. The objective of this study was to demonstrate a rapid, food safe, decellularization procedure to yield cell-free extracellular matrix scaffolds and evaluate them as cell carriers for lab grown meat. Broccoli florets were soaked in SDS, Tween-20, and bleach for 48 h. The decellularization process was confirmed via histology, which showed an absence of cell nuclei, and DNA quantification (0.0037 ± 0.00961 μg DNA/mg tissue). Decellularized carriers were sorted by cross sectional area (7.07 ± 1.74 mm2, 3.03 ± 1.15 mm2, and 0.49 ± 0.3 mm2) measured for eccentricity (0.73 ± 0.16). Density measurements of decellularized carriers (1.01 ± 0.01 g/cm) were comparable to traditional microcarriers. Primary bovine satellite cells were inoculated into and cultured within a reactor containing decellularized carriers. Cell adhesion was observed and cell death was limited to 2.55 ± 1.09%. These studies suggested that broccoli florets may serve as adequate edible carrier scaffolds for satellite cells.

Keywords