Microorganisms (Aug 2024)
Epibiotic Bacteria Isolated from the Non-Indigenous Species <i>Codium fragile</i> ssp. <i>fragile</i>: Identification, Characterization, and Biotechnological Potential
Abstract
Due to their richness in organic substances and nutrients, seaweed (macroalgae) harbor a large number of epiphytic bacteria on their surfaces. These bacteria interact with their host in multiple complex ways, in particular, by producing chemical compounds. The released metabolites may have biological properties beneficial for applications in both industry and medicine. In this study, we assess the diversity of culturable bacterial community of the invasive alga Codium fragile ssp. fragile with the aim to identify key groups within this epiphytic community. Seaweed samples were collected from the Northern Tunisian coast. A total of fifty bacteria were isolated in pure culture. These bacterial strains were identified by amplification of the ribosomal intergenic transcribed spacer between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. Antimicrobial activity, biochemical, and antibiotic resistance profile characterization were determined for the isolates. Isolated strains were tested for their antimicrobial potential against human and fish bacterial pathogens and the yeast Candida albicans, using the in vitro drop method. About 37% of isolated strains possess antibacterial activity with a variable antimicrobial spectrum. Ba1 (closely related to Pseudoalteromonas spiralis), Ba12 (closely related to Enterococcus faecium), and Bw4 (closely related to Pseudoalteromonas sp.) exhibited strong antimicrobial activity against E. coli. The isolated strain Ba4, closely related to Serratia marcescens, demonstrated the most potent activity against pathogens. The susceptibility of these strains to 12 commonly used antibiotics was investigated. Majority of the isolates were resistant to oxacillin, cefoxitin, tobramycin, and nitrofurantoin. Ba7 and Ba10, closely related to the Vibrio anguillarum strains, had the highest multidrug resistance profiles. The enzymes most commonly produced by the isolated strains were amylase, lecithinase, and agarase. Moreover, nine isolates produced disintegration zones around their colonies on agar plates with agarolitic index, ranging from 0.60 to 2.38. This investigation highlighted that Codium fragile ssp. fragile possesses an important diversity of epiphytic bacteria on its surface that could be cultivated in high biomass and may be considered for biotechnological application and as sources of antimicrobial drugs.
Keywords