PLoS ONE (Jan 2014)

Hepatic β-oxidation and regulation of carnitine palmitoyltransferase (CPT) I in blunt snout bream Megalobrama amblycephala fed a high fat diet.

  • Kang-Le Lu,
  • Wei-Na Xu,
  • Li-Na Wang,
  • Ding-Dong Zhang,
  • Chun-Nuan Zhang,
  • Wen-Bin Liu

DOI
https://doi.org/10.1371/journal.pone.0093135
Journal volume & issue
Vol. 9, no. 3
p. e93135

Abstract

Read online

High-fat diets may promote growth, partly through their protein-sparing effects. However, high-fat diets often lead to excessive fat deposition, which may have a negative impact on fish such as poor growth and suppressive immune. Therefore, this study investigated the effects of a fat-rich diet on the mechanisms of fat deposition in the liver. Three-hundred blunt snout bream (Megalobrama amblycephala) juveniles (initial mass 18.00 ± 0.05 g) were fed with one of two diets (5% or 15% fat) for 8 weeks. β-Oxidation capacity and regulation of rate-limiting enzymes were assessed. Large fat droplets were present in hepatocytes of fish fed the high-fat diet. This observation is thought to be largely owing to the reduced capacity for mitochondrial and peroxisomal β-oxidation in the livers of fish fed the high-fat diet, as well as the decreased activities of carnitine palmitoyltransferase (CPT) I and acyl-CoA oxidase (ACO), which are enzymes involved in fatty-acid metabolism. Study of CPT I kinetics showed that CPT I had a low affinity for its substrates and a low catalytic efficiency in fish fed the high-fat diet. Expression of both CPT I and ACO was significantly down-regulated in fish fed the high-fat diet. Moreover, the fatty-acid composition of the mitochondrial membrane varied between the two groups. In conclusion, the attenuated β-oxidation capacity observed in fish fed a high-fat diet is proposed to be owing to decreased activity and/or catalytic efficiency of the rate-limiting enzymes CPT I and ACO, via both genetic and non-genetic mechanisms.