Chemistry Teacher International (Apr 2020)

Organic chemistry lecture course and exercises based on true scale models

  • Lederle Felix,
  • Hübner Eike G.

DOI
https://doi.org/10.1515/cti-2019-0006
Journal volume & issue
Vol. 2, no. 2
pp. S1 – S19

Abstract

Read online

3D models of chemical structures are an important tool for chemistry lectures and exercises. Usually, simplified models based on standard bond length and angles are used. These models allow for a visualized discussion of (stereo)chemical aspects, but they do not represent the true spatial conditions. 3D-printing technologies facilitate the production of scale models. Several protocols describe the process from X-ray structures, calculated geometries or virtual molecules to printable files. In contrast, only a few examples describe the integration of scaled models in lecture courses. True bond angles and scaled bond lengths allow for a detailed discussion of the geometry and parameters derived therefrom, for example double bond character, aromaticity and many more. Here, we report a complete organic chemistry/stereochemistry lecture course and exercise based on a set of 37 scale models made from poly(lactic acid) as sustainable material. All models have been derived from X-ray structures and quantum chemical calculations. Consequently, the models reflect the true structure as close as possible. A fixed scaling factor of 1 : 1.8·108 has been applied to all models. Hands-on measuring of bond angles and bond length leads to an interactive course. The course has been evaluated with a very positive feedback.

Keywords