Heliyon (Jun 2024)

Natural products can be potential inhibitors of metalloproteinase II from Bacteroides fragilis to intervene colorectal cancer

  • Bushra Arif,
  • Saba Yasir,
  • Muhammad Saeed,
  • M. Qaiser Fatmi

Journal volume & issue
Vol. 10, no. 12
p. e32838

Abstract

Read online

Bacteroides fragilis, a gram negative and obligate anaerobe bacterium, is a member of normal gut microbiota and facilitates many essential roles being performed in human body in normal circumstances specifically in Gastrointestinal or GI tract. Sometimes, due to genetics, epigenetics, and environmental factors, Bacteroides fragilis and their protein(s) start interacting with intestinal epithelium thus damaging the lining leading to colorectal cancers (CRC). To identify these protein(s), we incorporated a novel subtractive proteomics approach in the study. Metalloproteinase II (MPII), a Bacteroides fragilis toxin (bft), was investigated for its virulence and unique pathways to demonstrate its specificity and uniqueness in pathogenicity followed by molecular docking against a set of small drug-like natural molecules to discover potential inhibitors against the toxin. All these identified inhibitor-like molecules were analyzed for their ADMET calculations and detailed physiochemical properties to predict their druggability, GI absorption, blood brain barrier and skin permeation, and others. Resultantly, a total of ten compounds with the least binding energies were obtained and were subjected to protein-compound interaction analysis. Interaction analysis revealed the most common ligand-interacting residues in MPII are His 345, Glu 346, His 339, Gly 310, Tyr 341, Pro 340, Asp 187, Phe 309, Lys 307, Ile 185, Thr 308, and Pro 184. Therefore, top three compounds complexed with MPII having best binding energies were selected in order to analyze their trajectories. RMSD, RMSF, Rg and MMPBSA analysis revealed that all compounds showed good binding and keeping the complex stable and compact throughout the simulation time in addition to all properties and qualities of being a potential inhibitor against MPII.

Keywords