Nature Communications (Jul 2024)

A weakly coordinating-intervention strategy for modulating Na+ solvation sheathes and constructing robust interphase in sodium-metal batteries

  • Chutao Wang,
  • Zongqiang Sun,
  • Yaqing Liu,
  • Lin Liu,
  • Xiaoting Yin,
  • Qing Hou,
  • Jingmin Fan,
  • Jiawei Yan,
  • Ruming Yuan,
  • Mingsen Zheng,
  • Quanfeng Dong

DOI
https://doi.org/10.1038/s41467-024-50751-w
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Constructing powerful anode/cathode interphases by modulate ion solvation structure is the principle of electrolyte design. However, the methodological and theoretical design principles of electrolyte/solvation structure and their effect on electrochemical performance are still vague. Here, we propose a cationic weakly coordinating-intervention strategy for modulating the Na+ solvation sheathes and constructing robust anode/cathode interphases in sodium-metal batteries. Unlike the local highly concentrated electrolytes, 1,2-difluorobenzene can weakly coordinate with Na+ thus transforming the solvation structure into Na+-anion-incorporated structures and strengthening anode/cathode interphases formation by combining with salt decomposition. Furthermore, the correlations between the electrode interface properties and solvation structure are revealed, which can be tuned by the weakly coordination. Ultimately, the modulated electrolyte achieves 97.5% Coulombic efficiency for 600 cycles in Na‖Cu cells at 1 mA cm−2 and a beneficial lifetime (2500 h) in Na‖Na cells. Meanwhile, Na‖PB cells have achieved long-term operation at 4.8 V, along with operation at wide temperatures.