ISPRS International Journal of Geo-Information (Nov 2017)

Comparison and Evolution of Extreme Rainfall-Induced Landslides in Taiwan

  • Chunhung WU

DOI
https://doi.org/10.3390/ijgi6110367
Journal volume & issue
Vol. 6, no. 11
p. 367

Abstract

Read online

This study analyzed the characteristics of, and locations prone to, extreme rainfall-induced landslides in three watersheds in Taiwan, as well as the long-term evolution of landslides in the Laonong River watershed (LRW), based on multiannual landslide inventories during 2003–2014. Extreme rainfall-induced landslides were centralized beside sinuous or meandering reaches, especially those with large sediment deposition. Landslide-prone strata during extreme rainfall events were sandstone and siltstone. Large-scale landslides were likely to occur when the maximum 6-h accumulated rainfall exceeded 420 mm. All of the large-scale landslides induced by short-duration and high-intensity rainfall developed from historical small-scale landslides beside the sinuous or meandering reaches or in the source area of rivers. However, most of the large-scale landslides induced by long-duration and high-intensity rainfall were new but were still located beside sinuous or meandering reaches or near the source. The frequency density of landslides under long-duration and high-intensity rainfall was larger by one order than those under short-duration rainfall, and the β values in the landslide frequency density-area analysis ranged from 1.22 to 1.348. The number of downslope landslides was three times larger than those of midslope and upslope landslides. The extreme rainfall-induced landslides occurred in the erosion gullies upstream of the watersheds, whereas those beside rivers were downstream. Analysis of the long-term evolution of landslides in the LRW showed that the geological setting, sinuousness of reaches, and sediment yield volume determined their location and evolution. Small-scale landslides constituted 71.9–96.2% of the total cases from 2003 to 2014, and were more easily induced after Typhoon Morakot (2009). The frequency density of landslides after Morakot was greater by one order than before, with 61% to 68% of total landslides located in the downslope. Small-scale landslides not beside the rivers disappeared within four years, whereas those beside rivers or located in the source areas either developed into large-scale landslides or slowly disappeared. Large-scale landslides caused by Morakot were either combined from several historical small-scale landslides in the river source areas or located beside the sinuous or meandering reaches. The probabilities of landslide recurrence in the LRW during the next 5, 10, and 20 years were determined to be 7.26%, 9.16%, and 10.48%, respectively, and those beside the rivers were 10.47%, 13.33%, and 15.41%, respectively.

Keywords