International Journal of Nanomedicine (Sep 2015)

Delivery of DNAzyme targeting aurora kinase A to inhibit the proliferation and migration of human prostate cancer

  • Xing Z,
  • Gao S,
  • Duan Y,
  • Han H,
  • Li L,
  • Yang Y,
  • Li Q

Journal volume & issue
Vol. 2015, no. default
pp. 5715 – 5727

Abstract

Read online

Zhen Xing,1 Sai Gao,1 Yan Duan,1 Haobo Han,1 Li Li,2 Yan Yang,1 Quanshun Li1 1Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2Department of Clinic Library, Changchun Women and Children’s Health, Changchun, People’s Republic of China Abstract: Herein, a polyethylenimine derivative N-acetyl-L-leucine-polyethylenimine (N-Ac-L-Leu-PEI) was employed as a carrier to achieve the delivery of DNAzyme targeting aurora kinase A using PC-3 cell as a model. Flow cytometry and confocal laser scanning microscopy demonstrated that the derivative could realize the cellular uptake of nanoparticles in an energy-dependent and clathrin-mediated pathway and obtain a high DNAzyme concentration in the cytoplasm through further endosomal escape. After DNAzyme transfection, expression level of aurora kinase A would be downregulated at the protein level. Meanwhile, the inhibition of cell proliferation was observed through 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell colony formation assay, attributing to the activation of apoptosis and cell cycle arrest. Through flow cytometric analysis, an early apoptotic ratio of 25.93% and G2 phase of 22.58% has been detected after N-Ac-L-Leu-PEI-mediated DNAzyme transfection. Finally, wound healing and Transwell migration assay showed that DNAzyme transfection could efficiently inhibit the cell migration. These results demonstrated that N-Ac-L-Leu-PEI could successfully mediate the DNAzyme delivery and downregulate the expression level of aurora kinase A, triggering a significant inhibitory effect of excessive proliferation and migration of tumor cells. Keywords: gene therapy, DNAzyme, aurora kinase A, N-acetyl-L-leucine-polyethylenimine, cell proliferation, cell migration