Remote Sensing (Jan 2021)

<u>Q</u>uiet <u>Ion</u>ospheric <u>D</u>-<u>R</u>egion (QIonDR) Model Based on VLF/LF Observations

  • Aleksandra Nina,
  • Giovanni Nico,
  • Srđan T. Mitrović,
  • Vladimir M. Čadež,
  • Ivana R. Milošević,
  • Milan Radovanović,
  • Luka Č. Popović

DOI
https://doi.org/10.3390/rs13030483
Journal volume & issue
Vol. 13, no. 3
p. 483

Abstract

Read online

The ionospheric D-region affects propagation of electromagnetic waves including ground-based signals and satellite signals during its intensive disturbances. Consequently, the modeling of electromagnetic propagation in the D-region is important in many technological domains. One of sources of uncertainty in the modeling of the disturbed D-region is the poor knowledge of its parameters in the quiet state at the considered location and time period. We present the Quiet Ionospheric D-Region (QIonDR) model based on data collected in the ionospheric D-region remote sensing by very low/low frequency (VLF/LF) signals and the Long-Wave Propagation Capability (LWPC) numerical model. The QIonDR model provides both Wait’s parameters and the electron density in the D-region area of interest at a given daytime interval. The proposed model consists of two steps. In the first step, Wait’s parameters are modeled during the quiet midday periods as a function of the daily sunspot number, related to the long-term variations during solar cycle, and the seasonal parameter, providing the seasonal variations. In the second step, the output of the first step is used to model Wait’s parameters during the whole daytime. The proposed model is applied to VLF data acquired in Serbia and related to the DHO and ICV signals emitted in Germany and Italy, respectively. As a result, the proposed methodology provides a numerical tool to model the daytime Wait’s parameters over the middle and low latitudes and an analytical expression valid over a part of Europe for midday parameters.

Keywords