Biomedicine & Pharmacotherapy (Mar 2020)

Reduced expression of CENP-E contributes to the development of hepatocellular carcinoma and is associated with adverse clinical features

  • Peirong He,
  • Penghui Hu,
  • Chaohao Yang,
  • Xingxiang He,
  • Ming Shao,
  • Yiguang Lin

Journal volume & issue
Vol. 123
p. 109795

Abstract

Read online

Human kinesin centromere-associated protein E (CENP-E), one of spindle checkpoint proteins, has been identified as a tumor suppressor in several types of cancer, however, its role in hepatocarcinogenesis remains unknown. Here we investigated the role of CENP-E in human hepatocellular carcinoma (HCC) employing HCC cell lines (Hep3B, SMMC7721, and QGY7701), animal models, and patient’s clinical samples and data. We demonstrated that down-regulation of CENP-E by CENP-E-silencing shRNAs significantly promoted HCC proliferation/growth both in vitro and in vivo. Further studies found that CENP-E suppressed the proliferation of HCC cells by halting cell cycle progression at the G1-S phase and accelerating cell apoptosis. Analyses of HCC patient samples and clinical data revealed that CENP-E was significantly down-regulated in HCC tissues and low CENP-E expression was significantly associated with patient’s adverse clinicopathological features: poor prognosis, advanced TNM stage, metastasis, and larger tumor size. Multivariate analysis indicated that CENP-E was an independent prognostic factor predicting outcomes of advanced HCC patients. Our data suggest that loss of CENP-E contributes to HCC development and is strongly associated with adverse HCC clinical pathology. Thus, CENP-E could be a novel target for new treatments and a useful prognostic biomarker for HCC patients.

Keywords