Catalysts (Mar 2022)

Facile Synthesis of Nanosheet-Stacked Hierarchical ZSM-5 Zeolite for Efficient Catalytic Cracking of n-Octane to Produce Light Olefins

  • Peng Wang,
  • Xia Xiao,
  • Yutong Pan,
  • Zhen Zhao,
  • Guiyuan Jiang,
  • Zhongdong Zhang,
  • Fanfang Meng,
  • Yuming Li,
  • Xiaoqiang Fan,
  • Lian Kong,
  • Zean Xie

DOI
https://doi.org/10.3390/catal12030351
Journal volume & issue
Vol. 12, no. 3
p. 351

Abstract

Read online

The development of an effective strategy for synthesizing two-dimensional MFI zeolites has attracted more and more attention. Herein, nanosheet-stacked hierarchical ZSM-5 zeolite was obtained by a seed-assisted hydrothermal synthesis route using a small amount of [C18H37-N+(CH3)2-C6H12-N+(CH3)2-C6H12]Br2 (C18-6-6Br2) as a zeolite structure-directing agent and triethylamine (TEA) as a zeolite growth modifier. By varying the molar ratio of C18-6-6Br2/TEA from 2.5/0 to 2.5/40, the morphologies and textural properties of the resultant HZ5-2.5/x catalysts were finely modulated. By increasing x from 5 to 40, the morphology of the HZ5-2.5/x changed from unilamellar assembly with narrow a–c plane to intertwined nanosheets with wide a–c plane and multilamellar nanosheets with house-of-cards morphology. The thickness of these nanosheets was almost 8–10 nm. In addition, selectivity to light olefins reached 70.7% for the HZ5-2.5/10 catalyst, which was 6.6% higher than that for CZSM-5 (64.1%). Furthermore, the MFI zeolite nanosheets exhibited better anticoking stability within the 60 h reaction time compared to conventional ZSM-5 zeolite, which could be attributed to the short diffusion path and hierarchical porosity. This work will provide valuable insights into the rational design of novel zeolite catalysts for the efficient cracking of hydrocarbons.

Keywords