Diagnostics (Apr 2023)

Optimized 18F-FDG PET-CT Method to Improve Accuracy of Diagnosis of Metastatic Cancer

  • Richard Black,
  • Jelle Barentsz,
  • David Howell,
  • David G. Bostwick,
  • Stephen B. Strum

DOI
https://doi.org/10.3390/diagnostics13091580
Journal volume & issue
Vol. 13, no. 9
p. 1580

Abstract

Read online

The diagnosis of cancer by FDG PET-CT is often inaccurate owing to subjectivity of interpretation. We compared the accuracy of a novel normalized (standardized) method of interpretation with conventional non-normalized SUV. Patients (n = 393) with various malignancies were studied with FDG PET/CT to determine the presence or absence of cancer. Target lesions were assessed by two methods: (1) conventional SUVmax (conSUVmax) and (2) a novel method that combined multiple factors to optimize SUV (optSUVmax), including the patient’s normal liver SUVmax, a liver constant (k) derived from a review of the literature, and use of site-specific thresholds for malignancy. The two methods were compared to pathology findings in 154 patients being evaluated for mediastinal and/or hilar lymph node (MHLNs) metastases, 143 evaluated for extra-thoracic lymph node (ETLNs) metastases, and 96 evaluated for liver metastases. OptSUVmax was superior to conSUVmax for all patient groups. For MHLNs, sensitivity was 83.8% vs. 80.7% and specificity 88.7% vs. 9.6%, respectively; for ETLNs, sensitivity was 92.1% vs. 77.8% and specificity 80.1% vs. 27.6%, respectively; and for lesions in the liver parenchyma, sensitivity was 96.1% vs. 82.3% and specificity 88.8% vs. 23.0%, respectively. Optimized SUVmax increased diagnostic accuracy of FDG PET-CT for cancer when compared with conventional SUVmax interpretation.

Keywords