Remote Sensing (Aug 2023)

Pseudolite Multipath Estimation Adaptive Mitigation of Vector Tracking Based on Ref-MEDLL

  • Bo Zhang,
  • Qing Wang,
  • Wenqing Xia,
  • Yu Sun,
  • Jinling Wang

DOI
https://doi.org/10.3390/rs15164041
Journal volume & issue
Vol. 15, no. 16
p. 4041

Abstract

Read online

Among many indoor positioning technologies, pseudolite positioning technology has become an important supplement to GNSS. In indoor open environments, pseudolite positioning technology can usually perform high-precision positioning. However, in a complex environment, the pseudolite receiver is seriously interfered by multipath and other interference signals, which will lead to a serious decline in the observation accuracy, signal lock loss or even no positioning results. Therefore, this work proposes a pseudolite indoor anti-multipath receiver based on reference multipath estimating delay lock loop (Ref-MEDLL). It adds the Ref-MEDLL multipath estimator module and the multipath mitigation module to the traditional receiver signal processing architecture. In the multipath mitigation module, the multipath estimation adaptive mitigation of vector tracking (MEAM-VT) method and the multipath estimation direct mitigation (MEDM) method for multipath mitigation is proposed. Experimental results show that the Ref-MEDLL multipath estimation method has good adaptability to multipath signals that have different time delays and different amplitudes; both the MEDM receiver and the MEAM-VT receiver have good multipath mitigation performance. The MEAM-VT method performs better than the MEDM method in multipath mitigation and tracking, but the stability of the pseudorange observations of the MEAM-VT method is not as good as that of the MEDM method. The positioning accuracy of the MEDM receiver and the MEAM-VT receiver has been improved to different degrees in static positioning experiments and dynamic positioning experiments.

Keywords