Remote Sensing (Jan 2020)

Combining Historical Remote Sensing, Digital Soil Mapping and Hydrological Modelling to Produce Solutions for Infrastructure Damage in Cosmo City, South Africa

  • George van Zijl,
  • Johan van Tol,
  • Darren Bouwer,
  • Simon Lorentz,
  • Pieter le Roux

DOI
https://doi.org/10.3390/rs12030433
Journal volume & issue
Vol. 12, no. 3
p. 433

Abstract

Read online

Urbanization and hydrology have an interactive relationship, as urbanization changing the hydrology of a system and the hydrology commonly causing structural damage to the infrastructure. Hydrological modelling has been used to quantify the water causing structural impacts, and to provide solutions to the issues. However, in already-urbanized areas, creating a soil map to use as input in the modelling process is difficult, as observation positions are limited and visuals of the natural vegetation which indicate soil distribution are unnatural. This project used historical satellite images in combination with terrain parameters and digital soil mapping methods to produce an accurate (Kappa statistic = 0.81) hydropedology soil map for the Cosmo City suburb in Johannesburg, South Africa. The map was used as input into the HYDRUS 2D and SWAT hydrological models to quantify the water creating road damage at Kampala Crescent, a road within Cosmo City (using HYDRUS 2D), as well as the impact of urbanization on the hydrology of the area (using SWAT). HYDRUS 2D modelling showed that a subsurface drain installed at Kampala Crescent would need a carrying capacity of 0.3 m3·h−1·m−1 to alleviate the road damage, while SWAT modelling shows that surface runoff in Cosmo City will commence with as little rainfall as 2 mm·month−1. This project showcases the value of multidisciplinary work. The remote sensing was invaluable to the mapping, which informed the hydrological modelling and subsequently provided answers to the engineers, who could then mitigate the hydrology-related issues within Cosmo City.

Keywords