Microbiology Spectrum (Aug 2022)
Compartment and Plant Identity Shape Tree Mycobiome in a Subtropical Forest
Abstract
ABSTRACT Deciphering the relationships between microbes and their host plants is critical for a better understanding of microbial diversity maintenance and community stability. Here, we investigated fungal diversity and community assembly in the phyllosphere and rhizosphere of 13 tree species in a subtropical common-garden experiment. The results showed that fungal community structures significantly differed across compartments (leaf, root, and soil) and different tree species. Higher α-diversity was observed in the phyllosphere than in the roots and rhizospheric soil. Fungal community composition (β-diversity) was significantly affected by both compartment and species identity. The fungal community compositions were significantly correlated with soil pH in the roots and the soils as well as with soil nitrate and leaf total phosphorus in the leaves. We found that fungal community assemblies were mainly driven by deterministic processes, regardless of compartments. Moreover, host preference analyses indicated that stronger plant/fungus preferences occurred in leaves than in roots and soils. Our results highlight the differences in tree mycobiome between aboveground and belowground compartments and have important implications for the promotion of biodiversity conservation and management sustainability for the subtropical forest. IMPORTANCE Subtropical mountain forests are widely distributed in Southern China and are characterized by high biodiversity. The interactions between plants and fungi play pivotal roles in biodiversity maintenance and community stability. Nevertheless, knowledge of fungal diversity and of the community assembly patterns of woody plants is scarce. Here, we investigated fungal diversity and community assembly in the phyllosphere and rhizosphere of 13 tree species in a common-garden experiment. We found that both compartment and plant identity influenced fungal diversity, community, and guild compositions, while deterministic processes mainly governed the fungal community assembly, especially in the rhizospheric fungal communities. Our results demonstrate that tree leaves represent stronger host/fungi preferences than do roots and soils. Together, our findings enhance the understanding of the roles of compartment and plant identity in structuring fungal communities as well as promote fungal diversity maintenance in subtropical mountain forest ecosystems.
Keywords