Известия Саратовского университета. Новая серия Серия: Физика (Sep 2023)
Optical spectroscopy of nanoporous membranes based on anodic alumina in an ammonia gas flow
Abstract
Background and Objectives: Membranes in the form of highly ordered nanostructures of porous anodic aluminum oxide (PAAO) with adjustable pore properties were obtained by electrochemical anodizing. PAAO nanostructures were prepared in an oxalic acid electrolyte at a direct current electrochemical potential of 30–60 V. The ready-made nanoporous membranes were modified with thin silver films 1.8, 3.6 and 5.4 nm thick. The study of the membrane surface by scanning electron microscopy has shown that nanoporous membranes have hexagonally arranged and highly ordered arrays of pores with a diameter of (30±4) nm and a packing density of about 1.8 · 10¹⁰ cm–2. Optical interference spectra of PAAO were recorded in the wavelength range of 300–900 nm. The optical properties of nanoporous membranes with a free and silver-modified surface changed depending on the time of interaction of the membrane surface with the ammonia gas flow, which led to changes in the interference pattern and, in turn, to changes in the effective optical thickness (EOT) of the membranes. Features of the influence of the membrane surfacemodified with silver onthe shape and sensitivity ofthe optical signal ofthe sensor have been revealed. The aim ofthis work was to experimentally study the temporal characteristics of the optical spectral response of nanoporous anodic alumina membranes with a free pore surface and modified with thin silver films in an ammonia gas flow. Materials and Methods: The thickness of the PAAO membrane, determined profilometrically, did not exceed 1.0 µm. The average inner diameter of Al2O3 nanopores is (30±4) nm. The silver films were deposited by magnetron sputtering at direct current. Changes in the effective optical thickness are used to quantify changes in the optical properties of the membrane. Changes in the effective optical thickness will be mainly determined by the effective refractive index of the PAAO-Ag molecular film of the adsorbed gas structure. The effective refractive index of the membrane was determined from the measured position of the interference maxima and the given membrane thickness. Results: Association processes have been considered, i.e. binding of analyte molecules to the surface of the PAAO nanoporous membrane. A stream of gaseous ammonia was chosen as the analyte. According to the Langmuir isotherm model, the sensor response during real-time measurements should follow a negative exponential trend. It has been shown that the shape of the sensor’s optical signal qualitatively repeats the shape of the theoretical curve of real-time optical probing in the regions of molecular binding and equilibrium. The molecular association time of the free surface of the PAAO nanoporous membrane was 7 ± 1 minutes. The deposition of thin silver films on the surface of a nanoporous PAAO membrane leads to a change in the shape of the optical signal and a decrease in its magnitude. Conclusion: On the basis of the synthesized nanoporous PAAO membranes with a free surface and modified with ultrathin silver films, experimental studies of the effect of ammonia flow on multibeam light interference in such membranes have been carried out. It has been found that the surface roughness and size effect of the silver film thickness have a significant effect on the transmission spectra and sensory sensitivity of the membranes. It has been shown that the largest relative change in the refractive index of the membrane in an ammonia flow is observed for the thinnest silver film 1.8 nm thick. It has been noted that there is a threshold value of the thickness of a silver film deposited on the surface of a nanoporous PAAО membrane, above which the use of such films in optical sensors with the mechanism of multipath light interference is not advisable, and the use of a different mechanism is required, for example, the mechanism of localized surface plasmon resonance.
Keywords