Land (Sep 2023)
Changes in the Occurrence of Five Invasive Plant Species in Different Ecosystem Types between 2009–2018 in Hungary
Abstract
Modelling and analysis of spatiotemporal characteristics of plant invasion can help in mapping and predicting the spread of invasive plants. The aim of our research was to investigate the spatiotemporal variability of five common invasive plant species (Ailanthus altissima, Asclepias syriaca, Elaeagnus angustifolia, Robinia pseudoacacia, and Solidago spp.) within different land cover (ecosystem)-type categories. The basis of the study was the National Geospatial Database of Invasive Plants (NGDIP) of Hungary, and the ecosystem types of the Ecosystem Map of Hungary (EMH). The GIS-based analysis of the detailed occurrence database of the invasive species (NGDIP) and the thematic land-cover (ecosystem)-type maps (EMH) examined allow us to answer the question of in which habitat types the occurrence and distribution of the given invasive plant has stagnated, decreased, or increased between 2006 and 2018. We developed a methodology with relevant data sources and demonstrated invasion variation, which can be used for future management planning and invasive biology research. Our results show that Asclepias syriaca and Robinia pseudoacacia are increasingly threatening grasslands and are also spreading more intensively in complex cultivated areas. The occurrences of Ailanthus altissima and Asclepias syriaca are declining in built-up areas due to the increasingly extreme environmental conditions of cities or modified urban planning. The spread of Solidago spp. is increasingly common in wetlands, threatening the biodiversity of floodplain (riparian) vegetation.
Keywords