Molecules (Sep 2015)

Cold-Setting Inkjet Printed Titania Patterns Reinforced by Organosilicate Binder

  • Marcela Králová,
  • Petr Dzik,
  • Vít Kašpárek,
  • Michal Veselý,
  • Jaroslav Cihlář

DOI
https://doi.org/10.3390/molecules200916582
Journal volume & issue
Vol. 20, no. 9
pp. 16582 – 16603

Abstract

Read online

A hybrid organo-silica sol was used as a binder for reinforcing of commercial titanium dioxide nanoparticles (Evonic P25) deposited on glass substrates. The organo-silica binder was prepared by the sol-gel process and mixtures of titania nanoparticles with the binder in various ratios were deposited by materials printing technique. Patterns with both positive and negative features down to 100 µm size and variable thickness were reliably printed by Fujifilm Dimatix inkjet printer. All prepared films well adhered onto substrates, however further post-printing treatment proved to be necessary in order to improve their reactivity. The influence of UV radiation as well as of thermal sintering on the final electrochemical and photocatalytic properties was investigated. A mixture containing 63 wt % of titania delivered a balanced compromise of mechanical stability, generated photocurrent density and photocatalytic activity. Although the heat treated samples yielded generally higher photocurrent, higher photocatalytic activity towards model aqueous pollutant was observed in the case of UV cured samples because of their superhydrophilic properties. While heat sintering remains the superior processing method for inorganic substrates, UV-curing provides a sound treatment option for heat sensitive ones.

Keywords