Integration of UHPLC/Q-OrbitrapMS-based metabolomics and activities evaluation to rapidly explore the anti-inflammatory components from lasianthus
Lele Zhang,
Shaofei Song,
Biying Chen,
Rongrong Li,
Liming Wang,
Chenxi Wang,
Lifeng Han,
Zhifei Fu,
Zhonglian Zhang,
Qilong Wang,
Heshui Yu
Affiliations
Lele Zhang
State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
Shaofei Song
State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
Biying Chen
State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
Rongrong Li
State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
Liming Wang
State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
Chenxi Wang
State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
Lifeng Han
State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
Zhifei Fu
State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
Zhonglian Zhang
Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China; Corresponding author.
Qilong Wang
State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China; Corresponding author. State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China.
Heshui Yu
State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Corresponding author.
Lasianthus, belonging to Rubiaceae, has been verified to improve clinical syndrome in immune diseases (e.g., hepatitis, nephritis, and rheumatoid arthritis). Both the anti-inflammatory function and chemical composition of Lasianthus vary considerably between different species but few studies focus. So essential it is to explore lasianthus and further search for anti-inflammatory substances. The target of this artical is to analyze the anti-inflammatory activity and chemical composition of lasianthus of different species. And the subsequent active compounds were explored. Primary, the anti-inflammatory activity among seven species of lasianthus (e.g., L. fordii., L. wallichii., L. hookeri C., L. verticillatus., L. sikkimensis., L. appressihirtus., and L. hookeri var) were evaluated by vitro experiments (RAW 264.7 cells). Next, UHPLC/Q-Orbitrap-MS-based metabolomics and the mass defect filter (MDF) algorithm were performed to explore metabolites. In addition, principal component analysis (PCA) was to screen out differential compounds in seven species. Finally, the correlation analysis between activities and composition to rapidly discover the active compounds (compounds were verified pharmacologically). Among the 7 species of lasianthus, the L. fordii. and L. hookeri C indicated the best anti-inflammatory activity. Untargeted metabolomics and MDF show 112 compounds, classified into six dominant types (e.g., flavonoids, phenolic acids, alkaloids, iridoids, coumarins, and anthraquinones). Furthermore, 33 differential metabolites were confirmed by PCA. Then according to correlation analysis and pharmacological validation, 7 compounds IC50<100 (e.g., scopoletin, asperulosidic acid, chlorogenic acid, ferulic acid, betaine, syringic acid, and emodin) were verified as anti-inflammatory compounds and conduct quantitative analysis. Metabolomics integrated with activities evaluation might be a rapid and effective strategy to explore the active compounds from natural products.