JID Innovations (Sep 2021)

Optimal Biomechanical Parameters for Measuring Sclerotic Chronic Graft-Versus-Host Disease

  • Laura X. Baker,
  • Fuyao Chen,
  • Austin Cronin,
  • Heidi Chen,
  • Arved Vain,
  • Madan Jagasia,
  • Eric R. Tkaczyk

Journal volume & issue
Vol. 1, no. 3
p. 100037

Abstract

Read online

Skin biomechanical parameters (dynamic stiffness, frequency, relaxation time, creep, and decrement) measured using a myotonometer (MyotonPRO) could inform the management of sclerotic disease. To determine which biomechanical parameter(s) can accurately differentiate patients with sclerotic chronic graft-versus-host disease from post–hematopoietic cell transplant controls, 15 patients with sclerotic chronic graft-versus-host disease and 11 post–hematopoietic cell transplant controls were measured with the myotonometer on 18 anatomic sites. Logistic regression and two machine learning algorithms (least absolute shrinkage and selection operator regression and random forest) were developed to classify subjects. In univariable analysis, frequency had the highest overfit-corrected area under the curve (0.91). Backward stepwise selection and random forest machine learning identified frequency and relaxation time as the optimal parameters for differentiating patients with sclerotic chronic graft-versus-host disease from post–hematopoietic cell transplant controls. Least absolute shrinkage and selection operator regression selected the combination of frequency and relaxation time (overfit-corrected area under the curve = 0.87). Discriminatory ability was maintained when only the sites accessible while the patient is supine (12 sites) were used. We report the distribution of values for these highly discriminative biomechanical parameters, which could inform the assessment of disease severity in future quantitative biomechanical studies of sclerotic chronic graft-versus-host disease.