Robotics (Jul 2024)
Fixed-Wing UAV Pose Estimation Using a Self-Organizing Map and Deep Learning
Abstract
In many Unmanned Aerial Vehicle (UAV) operations, accurately estimating the UAV’s position and orientation over time is crucial for controlling its trajectory. This is especially important when considering the landing maneuver, where a ground-based camera system can estimate the UAV’s 3D position and orientation. A Red, Green, and Blue (RGB) ground-based monocular approach can be used for this purpose, allowing for more complex algorithms and higher processing power. The proposed method uses a hybrid Artificial Neural Network (ANN) model, incorporating a Kohonen Neural Network (KNN) or Self-Organizing Map (SOM) to identify feature points representing a cluster obtained from a binary image containing the UAV. A Deep Neural Network (DNN) architecture is then used to estimate the actual UAV pose based on a single frame, including translation and orientation. Utilizing the UAV Computer-Aided Design (CAD) model, the network structure can be easily trained using a synthetic dataset, and then fine-tuning can be done to perform transfer learning to deal with real data. The experimental results demonstrate that the system achieves high accuracy, characterized by low errors in UAV pose estimation. This implementation paves the way for automating operational tasks like autonomous landing, which is especially hazardous and prone to failure.
Keywords