Sensors (Jun 2023)

Graph Neural Network-Guided Contrastive Learning for Sequential Recommendation

  • Xing-Yao Yang,
  • Feng Xu,
  • Jiong Yu,
  • Zi-Yang Li,
  • Dong-Xiao Wang

DOI
https://doi.org/10.3390/s23125572
Journal volume & issue
Vol. 23, no. 12
p. 5572

Abstract

Read online

Sequential recommendation uses contrastive learning to randomly augment user sequences and alleviate the data sparsity problem. However, there is no guarantee that the augmented positive or negative views remain semantically similar. To address this issue, we propose graph neural network-guided contrastive learning for sequential recommendation (GC4SRec). The guided process employs graph neural networks to obtain user embeddings, an encoder to determine the importance score of each item, and various data augmentation methods to construct a contrast view based on the importance score. Experimental validation is conducted on three publicly available datasets, and the experimental results demonstrate that GC4SRec improves the hit rate and normalized discounted cumulative gain metrics by 1.4% and 1.7%, respectively. The model can enhance recommendation performance and mitigate the data sparsity problem.

Keywords