Physics Letters B (Oct 2022)

Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei

  • Jun-Yao Xu,
  • Zheng-Zheng Li,
  • Bao-Hua Sun,
  • Yi-Fei Niu,
  • Xavier Roca-Maza,
  • Hiroyuki Sagawa,
  • Isao Tanihata

Journal volume & issue
Vol. 833
p. 137333

Abstract

Read online

The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and theories. Various probes have been proposed to constrain the symmetry energy and its density dependence. Currently, the extensive data yield already a good and consistent constraint to the symmetry energy (Esym(ρ)) at saturation density, but do not yet give a consistent result of one critical EoS parameter, L, the density dependence of the symmetry energy. In this work, we report a new probe of L at saturation density. A good linear correlation is found between L and the charge changing cross section difference (Δσcc) of mirror nuclei 30Si-30S for both the Skyrme-Hartree-Fock theory (SHF) and covariant (relativistic) density functionals (CDF). We found that the pairing effect for this mirror pair is essential to get a consistent correlation between L and Δσcc in both the SHF and CDF. Here, the cross sections are calculated on the same target and at the same energy using the zero-range optical-limit Glauber model. The linearity is found to be in the same precision as those found between L and neutron skin thickness or proton radius difference.

Keywords