Revealing the Impact of Oxygen Dissolved in Electrolytes on Aqueous Zinc-Ion Batteries
Lijun Su,
Lingyang Liu,
Bao Liu,
Jianing Meng,
Xingbin Yan
Affiliations
Lijun Su
Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Lingyang Liu
Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Bao Liu
Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Jianing Meng
Cuiying Honors College, Lanzhou University, Lanzhou, 730000, China
Xingbin Yan
Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China; Corresponding author
Summary: Aqueous zinc-ion batteries (ZIBs) are promising low-cost and high-safety energy storage devices. However, their capacity decay especially at the initial cyclic stage is a serious issue. Herein, we reveal that the dissolved oxygen in aqueous electrolyte has significant impact on the electrochemistry of Zn anode and ZIBs. After removing oxygen, the symmetrical set-up of Zn/Zn is capable of reversible plating/stripping with a 20-fold lifetime enhancement compared with that in oxygen enrichment condition. Taking aqueous Zn-MnO2 battery as an example, although the presence of oxygen can contribute an extra capacity over 20% at the initial cycles due to the electrocatalytic activity of MnO2 with oxygen, the corrosion of Zn anode can be eliminated in the oxygen-free circumstance and thus offering a better reversible energy storage system. The impact of the dissolved oxygen on the cycling stability also exists in other ZIBs using vanadium-based compounds, Birnessite and Prussian blue analog cathodes. : Electrochemical Energy Storage; Energy Storage; Materials Characterization Subject Areas: Electrochemical Energy Storage, Energy Storage, Materials Characterization