Frontiers in Cardiovascular Medicine (Mar 2024)
Reduced mitochondrial pyruvate carrier expression in hearts with heart failure and reduced ejection fraction patients: ischemic vs. non-ischemic origin
Abstract
Introduction and objectivesMitochondrial pyruvate carrier (MPC) mediates the entry of pyruvate into mitochondria, determining whether pyruvate is incorporated into the Krebs cycle or metabolized in the cytosol. In heart failure (HF), a large amount of pyruvate is metabolized to lactate in the cytosol rather than being oxidized inside the mitochondria. Thus, MPC activity or expression might play a key role in the fate of pyruvate during HF. The purpose of this work was to study the levels of the two subunits of this carrier, named MPC1 and MPC2, in human hearts with HF of different etiologies.MethodsProtein and mRNA expression analyses were conducted in cardiac tissues from three donor groups: patients with HF with reduced ejection fraction (HFrEF) with ischemic cardiomyopathy (ICM) or idiopathic dilated cardiomyopathy (IDC), and donors without cardiac pathology (Control). MPC2 plasma levels were determined by ELISA.ResultsSignificant reductions in the levels of MPC1, MPC2, and Sirtuin 3 (SIRT3) were observed in ICM patients compared with the levels in the Control group. However, no statistically significant differences were revealed in the analysis of MPC1 and MPC2 gene expression among the groups. Interestingly, Pyruvate dehydrogenase complex (PDH) subunits expression were increased in the ICM patients. In the case of IDC patients, a significant decrease in MPC1 was observed only when compared with the Control group. Notably, plasma MPC2 levels were found to be elevated in both disease groups compared with that in the Control group.ConclusionDecreases in MPC1 and/or MPC2 levels were detected in the cardiac tissues of HFrEF patients, with ischemic or idiopatic origen, indicating a potential reduction in mitochondrial pyruvate uptake in the heart, which could be linked to unfavorable clinical features.
Keywords