AIMS Mathematics (Aug 2021)
New Fujita type results for quasilinear parabolic differential inequalities with gradient dissipation terms
Abstract
This paper deals with the new Fujita type results for Cauchy problem of a quasilinear parabolic differential inequality with both a source term and a gradient dissipation term. Specially, nonnegative weights may be singular or degenerate. Under the assumption of slow decay on initial data, we prove the existence of second critical exponents $ \mu^{*} $, such that the nonexistence of solutions for the inequality occurs when $ \mu < \mu^{*} $.
Keywords