Molecules (Sep 2023)

A Combined Experimental and Computational Study of Novel Benzotriazinone Carboxamides as Alpha-Glucosidase Inhibitors

  • Zunera Khalid,
  • Syed Salman Shafqat,
  • Hafiz Adnan Ahmad,
  • Munawar Ali Munawar,
  • Sadaf Mutahir,
  • Safaa M. Elkholi,
  • Syed Rizwan Shafqat,
  • Rahila Huma,
  • Abdullah Mohammed Asiri

DOI
https://doi.org/10.3390/molecules28186623
Journal volume & issue
Vol. 28, no. 18
p. 6623

Abstract

Read online

Diabetes is a chronic metabolic disorder of the endocrine system characterized by persistent hyperglycemia appears due to the deficiency or ineffective use of insulin. The glucose level of diabetic patients increases after every meal and medically recommended drugs are used to control hyperglycemia. Alpha-glucosidase inhibitors are used as antidiabetic medicine to delay the hydrolysis of complex carbohydrates. Acarbose, miglitol, and voglibose are commercial drugs but patients suffer side effects of flatulence, bloating, diarrhea, and loss of hunger. To explore a new antidiabetic drug, a series of benzotriazinone carboxamides was synthesized and their alpha-glucosidase inhibition potentials were measured using in vitro experiments. The compounds 14k and 14l were found to be strong inhibitors compared to the standard drug acarbose with IC50 values of 27.13 ± 0.12 and 32.14 ± 0.11 μM, respectively. In silico study of 14k and 14l was carried out using molecular docking to identify the type of interactions developed between these compounds and enzyme sites. Both potent compounds 14k and 14l exhibited effective docking scores by making their interactions with selected amino acid residues. Chemical hardness and orbital energy gap values were investigated using DFT studies and results depicted affinity of 14k and 14l towards biological molecules. All computational findings were found to be in good agreement with in vitro results.

Keywords