Advances in Astronomy (Jan 2021)

Conformable Fractional Models of the Stellar Helium Burning via Artificial Neural Networks

  • Emad A.-B. Abdel-Salam,
  • Mohamed I. Nouh,
  • Yosry A. Azzam,
  • M. S. Jazmati

DOI
https://doi.org/10.1155/2021/6662217
Journal volume & issue
Vol. 2021

Abstract

Read online

The helium burning phase represents the second stage that the star used to consume nuclear fuel in its interior. In this stage, the three elements, carbon, oxygen, and neon, are synthesized. The present paper is twofold: firstly, it develops an analytical solution to the system of the conformable fractional differential equations of the helium burning network, where we used, for this purpose, the series expansion method and obtained recurrence relations for the product abundances, that is, helium, carbon, oxygen, and neon. Using four different initial abundances, we calculated 44 gas models covering the range of the fractional parameter α=0.5−1 with step Δα=0.05. We found that the effects of the fractional parameter on the product abundances are small which coincides with the results obtained by a previous study. Secondly, we introduced the mathematical model of the neural network (NN) and developed a neural network algorithm to simulate the helium burning network using a feed-forward process. A comparison between the NN and the analytical models revealed very good agreement for all gas models. We found that NN could be considered as a powerful tool to solve and model nuclear burning networks and could be applied to the other nuclear stellar burning networks.