Geothermal Energy (Oct 2022)

Heat storage efficiency, ground surface uplift and thermo-hydro-mechanical phenomena for high-temperature aquifer thermal energy storage

  • Rubén Vidal,
  • Sebastià Olivella,
  • Maarten W. Saaltink,
  • François Diaz-Maurin

DOI
https://doi.org/10.1186/s40517-022-00233-3
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 27

Abstract

Read online

Abstract High-temperature aquifer thermal energy storage (HT-ATES) systems can help in balancing energy demand and supply for better use of infrastructures and resources. The aim of these systems is to store high amounts of heat to be reused later. HT-ATES requires addressing problems such as variations of the properties of the aquifer, thermal losses and the uplift of the surface. Coupled thermo-hydro-mechanical (THM) modelling is a good tool to analyse the viability and cost effectiveness of HT-ATES systems and to understand the interaction of processes, such as heat flux, groundwater flow and ground deformation. The main problem of this modelling is its high computational cost. We propose a dimensional and numerical analysis of the thermo-hydro-mechanical behaviour of a pilot HT-ATES. The results of this study have provided information about the dominant thermo-hydraulic fluxes, evolution of the energy efficiency of the system and the role of the hydraulic and thermal loads generated by the injection and extraction of hot water.

Keywords