Oil & Gas Science and Technology (Nov 2011)

Global Methodology to Integrate Innovative Models for Electric Motors in Complete Vehicle Simulators Méthodologie générale d’intégration de modèles innovants de moteurs électriques dans des simulateurs véhicules complets

  • Abdelli A.,
  • Le Berr F.

DOI
https://doi.org/10.2516/ogst/2011143
Journal volume & issue
Vol. 66, no. 5
pp. 877 – 888

Abstract

Read online

By what means the greenhouse gas emissions of passenger cars can be reduced to 120 g/km in 2012 and 95 g/km in 2020 as the European Commission and the automotive manufacturers are stated? This question with multi answers preoccupies at the moment the whole automobile world. One of the most promising solutions which receive attention is the electrification of the vehicle. It is this idea that has prompted the automobile manufacturers to envisage increasingly innovative hybrid vehicles. However, this theoretically interesting solution makes more complex the powertrain, which requires the use of simulation tools in order to reduce the cost and the time of system development. System simulation, which is already a crucial tool for the design process of internal combustion engines, becomes indispensable in the development of the Hybrid Electric Vehicle (HEV). To study the complex structures of HEV, following the example of the physical models developed for the internal combustion engine, system simulation has to provide itself of the same predictive models for electric machines. From their specifications, these models have to take into account the strict constraint on the time simulation. This constraint guarantees the wide use of simulators, notably to help the development and the validation of control strategies. This paper aims to present a global methodology to develop innovative models of electrical machines. The final objective of these models is to be integrated in a global vehicle simulator. This methodology includes several types of models and tools, as Finite Elements Models (FEM), characterization and simulating models. This methodology was applied successfully to model an internal permanent magnet synchronous motors. At the end of the modelling process of the electric motor, the latter has been integrated in a complete global hybrid vehicle. This guarantees the good operation and integration in the global process of a new vehicle concept. Comment reduire les emissions moyennes de CO2 des vehicules particuliers a 120 g/km en 2012 et 95 g/km en 2020 comme le prevoit l’accord conclu entre la Commission Europeenne et les constructeurs europeens ? Cette question a reponses multiples preoccupe a l’heure actuelle l’ensemble du monde automobile. L’electrification des vehicules semble etre une des solutions les plus pertinentes, ce qui pousse les constructeurs a envisager des vehicules hybrides de plus en plus innovants. Cette solution, theoriquement tres interessante, complexifie encore un peu plus les groupes moto-propulseurs des vehicules, ce qui necessite l’utilisation d’outils de simulation adequats pour reduire les couts et les durees de developpement. La simulation systeme, outil deja primordial dans le processus de developpement des moteurs a combustion interne, devient alors incontournable. Pour etudier ce type d’architectures hybrides complexes, et a l’instar des modeles physiques developpes pour le moteur a combustion interne, la simulation systeme doit se doter de modeles predictifs comparables pour les machines electriques. Des leurs specifications, ces modeles doivent integrer certaines contraintes tres exigeantes sur les temps de simulation, contrainte garantissant par la suite une plus large utilisation des simulateurs, notamment pour le developpement et la validation de strategies de controle. L’objectif de ce papier est donc de presenter une methodologie generale de developpement de modeles de machines electriques, modeles ayant pour objectif final d’etre integres dans un simulateur vehicule complet. Cette methodologie met en scene differents types de modelisations (modeles elements finis, modeles de caracterisation, modele de simulation) permettant un compromis temps de calcul – precision adequat. Cette methodologie a ete deployee avec succes pour la modelisation d’un moteur synchrone a aimants permanents. A l’issue du processus de modelisation, ce dernier a ete integre dans un simulateur complet de vehicule hybride, garantissant son bon fonctionnement et sa bonne integration dans le processus global de conception d’un nouveau prototype.