Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms: An Analysis of the Spanish Group of Myelodysplastic Syndromes
Adrian Mosquera Orgueira,
Manuel Mateo Perez Encinas,
Nicolas A Diaz Varela,
Elvira Mora,
Marina Díaz-Beyá,
María Julia Montoro,
Helena Pomares,
Fernando Ramos,
Mar Tormo,
Andres Jerez,
Josep F Nomdedeu,
Carlos De Miguel Sanchez,
Arenillas Leonor,
Paula Cárcel,
Maria Teresa Cedena Romero,
Blanca Xicoy,
Eugenia Rivero,
Rafael Andres del Orbe Barreto,
Maria Diez-Campelo,
Luis E. Benlloch,
Davide Crucitti,
David Valcárcel
Affiliations
Adrian Mosquera Orgueira
1 Complexo Hospitalario Universitario de Santiago de Compostela, Department of Hematology, Instituto de Investigacións Sanitarias de Santiago, Santiago de Compostela, Spain
Manuel Mateo Perez Encinas
1 Complexo Hospitalario Universitario de Santiago de Compostela, Department of Hematology, Instituto de Investigacións Sanitarias de Santiago, Santiago de Compostela, Spain
Nicolas A Diaz Varela
2 Hospital Central de Asturias, Oviedo, Spain
Elvira Mora
3 Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
Marina Díaz-Beyá
4 Hospital Clinic, Dept. of Hematology, IDIBAPS, Barcelona, Spain
María Julia Montoro
5 Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Barcelona, Spain
Helena Pomares
6 Hematology Department., Hospital Duran i Reynals. Institut Català d’Oncologia, Hospital Duran i Reynals. Institut Català d’Oncologia, Hospitalet, Barcelona, Spain
Fernando Ramos
7 Department of Hematology, Hospital Universitario de León, Spain
Mar Tormo
8 Servicio de Hematología. Hospital Clínico Universitario de Valencia, Spain
Andres Jerez
9 Hematology and Medical Oncology Department, Hospital Morales Meseguer, IMIB, Murcia, Spain
Josep F Nomdedeu
10 Hematology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
Carlos De Miguel Sanchez
11 Hospital Universitario de Álava - Sede Txagorritxu, Vitoria-Gasteiz, Spain
Arenillas Leonor
12 Laboratoris de Citologia Hematològica i Citogenètica, servei de Patologia, Hospital del Mar. GRETNHE- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
Paula Cárcel
13 Department of Hematology, Hospital Público Universitario de la Ribera, Alzira, Valencia, Spain
Maria Teresa Cedena Romero
14 Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria i+12, Madrid, Spain
Blanca Xicoy
15 HU German Trias i Pujol - Institut Català d’ Oncologia, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
Eugenia Rivero
16 Department of Hematology, University Hospital Arnau de Vilanova, Lleida, Spain
Myelodysplastic neoplasms (MDS) are a heterogeneous group of hematological stem cell disorders characterized by dysplasia, cytopenias, and increased risk of acute leukemia. As prognosis differs widely between patients, and treatment options vary from observation to allogeneic stem cell transplantation, accurate and precise disease risk prognostication is critical for decision making. With this aim, we retrieved registry data from MDS patients from 90 Spanish institutions. A total of 7202 patients were included, which were divided into a training (80%) and a test (20%) set. A machine learning technique (random survival forests) was used to model overall survival (OS) and leukemia-free survival (LFS). The optimal model was based on 8 variables (age, gender, hemoglobin, leukocyte count, platelet count, neutrophil percentage, bone marrow blast, and cytogenetic risk group). This model achieved high accuracy in predicting OS (c-indexes; 0.759 and 0.776) and LFS (c-indexes; 0.812 and 0.845). Importantly, the model was superior to the revised International Prognostic Scoring System (IPSS-R) and the age-adjusted IPSS-R. This difference persisted in different age ranges and in all evaluated disease subgroups. Finally, we validated our results in an external cohort, confirming the superiority of the Artificial Intelligence Prognostic Scoring System for MDS (AIPSS-MDS) over the IPSS-R, and achieving a similar performance as the molecular IPSS. In conclusion, the AIPSS-MDS score is a new prognostic model based exclusively on traditional clinical, hematological, and cytogenetic variables. AIPSS-MDS has a high prognostic accuracy in predicting survival in MDS patients, outperforming other well-established risk-scoring systems.