Breast Cancer Research (Feb 2019)
The long-term prognostic and predictive capacity of cyclin D1 gene amplification in 2305 breast tumours
Abstract
Abstract Background Use of cyclin D1 (CCND1) gene amplification as a breast cancer biomarker has been hampered by conflicting assessments of the relationship between cyclin D1 protein levels and patient survival. Here, we aimed to clarify its prognostic and treatment predictive potential through comprehensive long-term survival analyses. Methods CCND1 amplification was assessed using SNP arrays from two cohorts of 1965 and 340 patients with matching gene expression array and clinical follow-up data of over 15 years. Kaplan-Meier and multivariable Cox regression analyses were used to determine survival differences between CCND1 amplified vs. non-amplified tumours in clinically relevant patient sets, within PAM50 subtypes and within treatment-specific subgroups. Boxplots and differential gene expression analyses were performed to assess differences between amplified vs. non-amplified tumours within PAM50 subtypes. Results When combining both cohorts, worse survival was found for patients with CCND1-amplified tumours in luminal A (HR = 1.68; 95% CI, 1.15–2.46), luminal B (1.37; 1.01–1.86) and ER+/LN−/HER2− (1.66; 1.14–2.41) subgroups. In gene expression analysis, CCND1-amplified luminal A tumours showed increased proliferation (P < 0.001) and decreased progesterone (P = 0.002) levels along with a large overlap in differentially expressed genes when comparing luminal A and B-amplified vs. non-amplified tumours. Conclusions Our results indicate that CCND1 amplification is associated with worse 15-year survival in ER+/LN−/HER2−, luminal A and luminal B patients. Moreover, luminal A CCND1-amplified tumours display gene expression changes consistent with a more aggressive phenotype. These novel findings highlight the potential of CCND1 to identify patients that could benefit from long-term treatment strategies.
Keywords