Communications in Analysis and Mechanics (Nov 2024)

Brezis Nirenberg type results for local non-local problems under mixed boundary conditions

  • Lovelesh Sharma

DOI
https://doi.org/10.3934/cam.2024038
Journal volume & issue
Vol. 16, no. 4
pp. 872 – 895

Abstract

Read online

In this paper, we are concerned with an elliptic problem with mixed Dirichlet and Neumann boundary conditions that involve a mixed operator (i.e., the combination of classical Laplace operator and fractional Laplace operator) and critical nonlinearity. Also, we focus on identifying the optimal constant in the mixed Sobolev inequality, which we show is never achieved. Furthermore, by using variational methods, we provide an existence and nonexistence theory for both linear and superlinear perturbation cases.

Keywords