PLoS ONE (Jan 2013)

Number and function of bone-marrow derived angiogenic cells and coronary flow reserve in women without obstructive coronary artery disease: a substudy of the NHLBI-sponsored Women's Ischemia Syndrome Evaluation (WISE).

  • Rajesh Mohandas,
  • Larysa Sautina,
  • Shiyu Li,
  • Xuerong Wen,
  • Tianyao Huo,
  • Eileen Handberg,
  • Yueh-Yun Chi,
  • C Noel Bairey Merz,
  • Carl J Pepine,
  • Mark S Segal

DOI
https://doi.org/10.1371/journal.pone.0081595
Journal volume & issue
Vol. 8, no. 12
p. e81595

Abstract

Read online

BackgroundIn women with ischemia and no obstructive coronary artery disease, the Women's Ischemic Syndrome Evaluation (WISE) observed that microvascular coronary dysfunction (MCD) is the best independent predictor of adverse cardiovascular events. Since coronary microvascular tone is regulated in part by endothelium, we hypothesized that circulating endothelial cells (CEC), which reflect endothelial injury, and the number and function of bone-marrow derived angiogenic cells (BMDAC), which could help repair damaged endothelium, may serve as biomarkers for decreased coronary flow reserve (CFR) and MCD.MethodsWe studied 32 women from the WISE cohort. CFR measurements in response to intracoronary adenosine were taken as an index of MCD. We enumerated BMDAC colonies and CEC in peripheral blood samples. BMDAC function was assessed by assay of migration of CD34+ cells toward SDF-1 and measurement of bioavailable nitric oxide (NO). These findings were compared with a healthy reference group and also entered into a multivariable model with CFR as the dependent variable.ResultsCompared with a healthy reference group, women with MCD had lower numbers of BMDAC colonies [16 (0, 81) vs. 24 (14, 88); P = 0.01] and NO [936 (156, 1875) vs. 1168 (668, 1823); P = 0.02]. Multivariable regression analysis showed strong correlation of CFR to the combination of BMDAC colony count and CD34+ cell function (migration and NO) (R(2) = 0.45; PConclusionsThe BMDAC function and numbers of BMDAC colonies are decreased in symptomatic women with MCD and are independently associated with CFR. These circulating cells may provide mechanistic insights into MCD in women with ischemia.