Journal of Nanobiotechnology (Sep 2021)

A dual-quenched ECL immunosensor for ultrasensitive detection of retinol binding protein 4 based on luminol@AuPt/ZIF-67 and MnO2@CNTs

  • Wei Gong,
  • Suqing Yang,
  • Fen Zhang,
  • Fengshun Tian,
  • Junman Chen,
  • Zhigang Yin,
  • Shijia Ding,
  • Wei Yang,
  • Rong Luo

DOI
https://doi.org/10.1186/s12951-021-01020-1
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Retinol binding protein 4 (RBP4) has been regarded as an important serological biomarker for type 2 diabetes mellitus (T2DM). Hence, the construction of a highly sensitive detection method for RBP4 is the key to early prevention and multidisciplinary intervention of T2DM. In this work, a dual-quenched electrochemiluminescence (ECL) immunosensor has been fabricated for ultrasensitive detection of RBP4 by combining zeolitic imidazolate framework-67/AuPt-supported luminol (luminol@AuPt/ZIF-67) with MnO2 nanosheets-grown on carbon nanotubes (MnO2@CNTs). Results AuPt/ZIF-67 hybrids with high-efficiency peroxidase-like activity could provide multipoint binding sites for luminol and antibodies and significantly boost the amplified initial signal of the ECL immunosensor. Upon glutathione/H2O2 coreactants system, MnO2@CNTs composites could quench the initial signal by inhibiting mimic peroxidase activity of luminol@AuPt/ZIF-67. Moreover, the absorption spectrum of the MnO2@CNTs composites completely overlaps with the emission spectrum of luminol, which can further reduce initial signal by ECL resonance energy transfer (ECL-RET). Conclusions Benefiting from the above-mentioned properties, the designed immunoassay sensitivity exhibited excellent sensitivity and relative stability for RBP4 detection range from 0.0001 to 100 ng mL−1 with a low detection limit of 43 fg mL−1. Therefore, our ECL immunosensor provides an alternative assaying strategy for early diagnosis of T2DM. Graphic abstract

Keywords