Journal of High Energy Physics (Oct 2020)

Effects of non-conformal boundary on entanglement entropy

  • Andrew Loveridge

DOI
https://doi.org/10.1007/JHEP10(2020)151
Journal volume & issue
Vol. 2020, no. 10
pp. 1 – 27

Abstract

Read online

Abstract Spacetime boundaries with canonical Neuman or Dirichlet conditions preserve conformal invarience, but “mixed” boundary conditions which interpolate linearly between them can break conformal symmetry and generate interesting Renormalization Group flows even when a theory is free, providing soluble models with nontrivial scale dependence. We compute the (Rindler) entanglement entropy for a free scalar field with mixed boundary conditions in half Minkowski space and in Anti-de Sitter space. In the latter case we also compute an additional geometric contribution, which according to a recent proposal then collectively give the 1/N corrections to the entanglement entropy of the conformal field theory dual. We obtain some perturbatively exact results in both cases which illustrate monotonic interpolation between ultraviolet and infrared fixed points. This is consistent with recent work on the irreversibility of renormalization group, allowing some assessment of the aforementioned proposal for holographic entanglement entropy and illustrating the generalization of the g-theorem for boundary conformal field theory.

Keywords