Micromachines (Aug 2022)

Microencapsulation of <i>Bacillus velezensis</i> Using Alginate-Gum Polymers Enriched with TiO<sub>2</sub> and SiO<sub>2</sub> Nanoparticles

  • Mojde Moradi Pour,
  • Roohallah Saberi Riseh,
  • Reza Ranjbar-Karimi,
  • Mohadeseh Hassanisaadi,
  • Abbas Rahdar,
  • Francesco Baino

DOI
https://doi.org/10.3390/mi13091423
Journal volume & issue
Vol. 13, no. 9
p. 1423

Abstract

Read online

Bacillus bacteria are a group of plant growth stimulants that increase plant growth and resistance to plant pathogens by producing various metabolites. With their large surface area and small size, nanoparticles can be used in controlled-release formulations and increase the efficiency of the desired product. Encapsulation of biological agents in combination with nanoparticles can be an essential step in increasing the performance of these agents in adverse environmental conditions. In this study, which is the result of a collaboration between scientists from Italy and Iran, Bacillus velezensis was encapsulated in alginate combined with whey protein and zedo, mastic, and tragacanth gums in the presence of silica and titania nanoparticles to obtain two-layer and multilayer assemblies acting as novel, smart micro-encapsulation systems. The results of laboratory studies showed that the B. velezensis could produce protease, lipase, siderophore, auxin, and a dissolution of mineral phosphate. Scanning electron microscopy images (SEM) showed that the studied microcapsules were almost spherical. Moisture affinity, swelling, and efficiency of each microcapsule were examined. The results showed that the highest encapsulation efficiency (94.3%) was related to the multilayer formulation of alginate-whey protein-zedo. XRD and FTIR spectroscopy showed that the alginate, whey protein, and zedo were mixed properly and no incompatible composition occurred in the reaction. This study aimed to provide a suitable formulation of biofertilizers based on biodegradable compounds as an alternative to chemical fertilizers, which is low cost and very effective without harming humans and the environment.

Keywords