Sensors (Oct 2024)

Enhanced Vital Parameter Estimation Using Short-Range Radars with Advanced Motion Compensation and Super-Resolution Techniques

  • Sewon Yoon,
  • Seungjae Baek,
  • Inoh Choi,
  • Soobum Kim,
  • Bontae Koo,
  • Youngseok Baek,
  • Jooho Jung,
  • Sanghong Park,
  • Min Kim

DOI
https://doi.org/10.3390/s24206765
Journal volume & issue
Vol. 24, no. 20
p. 6765

Abstract

Read online

Various short-range radars, such as impulse-radio ultra-wideband (IR-UWB) and frequency-modulated continuous-wave (FMCW) radars, are currently employed to monitor vital signs, including respiratory and cardiac rates (RRs and CRs). However, these methods do not consider the motion of an individual, which can distort the phase of the reflected signal, leading to inaccurate estimation of RR and CR because of a smeared spectrum. Therefore, motion compensation (MOCOM) is crucial for accurately estimating these vital rates. This paper proposes an efficient method incorporating MOCOM to estimate RR and CR with super-resolution accuracy. The proposed method effectively models the radar signal phase and compensates for motion. Additionally, applying the super-resolution technique to RR and CR separately further increases the estimation accuracy. Experimental results from the IR-UWB and FMCW radars demonstrate that the proposed method successfully estimates RRs and CRs even in the presence of body movement.

Keywords