Firefly-Inspired Approach to Develop New Chemiluminescence Materials
Yuxing Yan,
Shuo Wang,
Fuli Xie,
Xiaofeng Fang,
Yu-Mo Zhang,
Sean Xiao-An Zhang
Affiliations
Yuxing Yan
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China
Shuo Wang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China
Fuli Xie
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China
Xiaofeng Fang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China
Yu-Mo Zhang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China; Corresponding author
Sean Xiao-An Zhang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China
Summary: Bioluminescence, wherein marine and terrestrial organisms chemically produce light for communication, is a burgeoning area of research. Herein, we demonstrate a new series of artificial chemiluminescent compounds inspired by the enol-degradation reaction of natural bioluminescent molecules, luciferins. Based on systematic optical experiments, isotope labeling, and theoretical calculations, the chemiluminescent mechanism of these new materials and the relationship of enol-degradation reaction and chemiluminescence are fully discussed. The color and efficiency of the artificial chemiluminescent materials can be easily adjusted, and blue (486 nm), yellow (565 nm), and near-infrared (756 nm) luminescence can thus be obtained. The findings and in-depth understanding herein may accelerate the development of bio/chemiluminescent materials for analytical applications and non-invasive bioluminescence imaging. : Chemistry; Functional Group Chemistry; Organic Chemistry Subject Areas: Chemistry, Functional Group Chemistry, Organic Chemistry