PLoS ONE (Jan 2023)

Genome‑wide identification and characterization of miR396 family members and their target genes GRF in sorghum (Sorghum bicolor (L.) moench).

  • Huiyan Wang,
  • Yizhong Zhang,
  • Du Liang,
  • Xiaojuan Zhang,
  • Xinqi Fan,
  • Qi Guo,
  • Linfang Wang,
  • Jingxue Wang,
  • Qingshan Liu

DOI
https://doi.org/10.1371/journal.pone.0285494
Journal volume & issue
Vol. 18, no. 5
p. e0285494

Abstract

Read online

MicroRNAs (miRNAs) widely participate in plant growth and development. The miR396 family, one of the most conserved miRNA families, remains poorly understood in sorghum. To reveal the evolution and expression pattern of Sbi-miR396 gene family in sorghum, bioinformatics analysis and target gene prediction were performed on the sequences of the Sbi-miR396 gene family members. The results showed that five Sbi-miR396 members, located on chromosomes 4, 6, and 10, were identified at the whole-genome level. The secondary structure analysis showed that the precursor sequences of all five Sbi-miR396 potentially form a stable secondary stem-loop structure, and the mature miRNA sequences were generated on the 5' arm of the precursors. Sequence analysis identified the mature sequences of the five sbi-miR396 genes were high identity, with differences only at the 1st, 9th and 21st bases at the 5' end. Phylogenetic analysis revealed that Sbi-miR396a, Sbi-miR396b, and Sbi-miR396c were clustered into Group I, and Sbi-miR396d and Sbi-miR396e were clustered into Group II, and all five sbi-miR396 genes were closely related to those of maize and foxtail millet. Expression analysis of different tissue found that Sbi-miR396d/e and Sbi-miR396a/b/c were preferentially and barely expressed, respectively, in leaves, flowers, and panicles. Target gene prediction indicates that the growth-regulating factor family members (SbiGRF1/2/3/4/5/6/7/8/10) were target genes of Sbi-miR396d/e. Thus, Sbi-miR396d/e may affect the growth and development of sorghum by targeting SbiGRFs. In addition, expression analysis of different tissues and developmental stages found that all Sbi-miR396 target genes, SbiGRFs, were barely expressed in leaves, root and shoot, but were predominantly expressed in inflorescence and seed development stage, especially SbiGRF1/5/8. Therefore, inhibition the expression of sbi-miR396d/e may increase the expression of SbiGRF1/5/8, thereby affecting floral organ and seed development in sorghum. These findings provide the basis for studying the expression of the Sbi-mir396 family members and the function of their target genes.