International Journal of Nanomedicine (Jul 2024)

Covalent Organic Framework-Based Theranostic Platforms for Restricting H1N1 Influenza Virus Infection

  • Ding LG,
  • Ji X,
  • Liu YY,
  • Shi M,
  • Li JD,
  • Liu F,
  • Zhang YY,
  • Yu J,
  • Wu JQ

Journal volume & issue
Vol. Volume 19
pp. 7399 – 7414

Abstract

Read online

Luo-Gang Ding,1,* Xiang Ji,2,* Yue-Yue Liu,3,* Min Shi,1 Jian-Da Li,1 Fei Liu,1 Yu-Yu Zhang,1 Jiang Yu,1 Jia-Qiang Wu1 1Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China; 2Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People’s Republic of China; 3Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, 250100, People’s Republic of China*These authors contributed equally to this workCorrespondence: Jia-Qiang Wu; Jiang Yu, Shandong Academy of Agricultural Sciences, Jinan, 250100, People’s Republic of China, Email [email protected]; [email protected]: Influenza A (H1N1) virus is a highly contagious respiratory disease that causes severe illness and death. Vaccines and antiviral drugs are limited by viral variation and drug resistance, so developing efficient integrated theranostic options appears significant in anti-influenza virus infection.Methods: In this study, we designed and fabricated covalent organic framework (COF) based theranostic platforms (T705@DATA-COF-Pro), which was composed of an RNA polymerase inhibitor (favipiravir, T705), the carboxyl-enriched COF (DATA-COF) nano-carrier and Cy3-labeled single DNA (ssDNA) probe.Results: The multi-porosity COF core provided an excellent micro-environment and smooth delivery for T705. The ssDNA probe coating bound to the nucleic acids of H1N1 selectively, thus controlling drug release and allowing fluorescence imaging. The combination of COF and probe triggered the synergism, promoting drug further therapeutic outcomes. With the aid of T705@DATA-COF-Pro platforms, the H1N1-infected mouse models lightly achieved diagnosis and significantly prolonged survival.Conclusion: This research underscores the distinctive benefits and immense potential of COF materials in nano-preparations for virus infection, offering novel avenues for the detection and treatment of H1N1 virus infection.Keywords: crystal porous materials, microenvironment-responsive, controlled release, fluorescence imaging, diagnosis and therapy

Keywords