BMC Cancer (Aug 2019)
Development of high-throughput genotyping method of all 18 HR HPV based on the MALDI-TOF MS platform and compared with the Roche Cobas 4800 HPV assay using clinical specimens
Abstract
Abstract Background To develop a new 18 high-risk human papillomavirus (HR HPV) detection and genotyping assay, which is important to evaluate the risk degree of HR HPV for causing cancers. Methods All 18 HR HPV and β-globin relative DNA fragments were synthesized and cloned to a plasmid pUC57 to obtain their recombinant plasmids. Based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platform, each of the 18 HR HPV genotypes were investigated using their constructed recombinant plasmids. The new 18 HR HPV genotyping assay was tested using 356 clinical specimens and the results were compared to ones detected by the Roche Cobas 4800 HPV assay (Cobas). The discrepant results between two assays were resolved by sequencing and genotyping methods. Results The new 18 HR HPV MALDI-TOF MS genotyping assay was developed using HPV recombination plasmids. The sensitivity was 103 to 102 copies/reaction for the all 18 HR HPV. This new developed HR HPV genotyping test was used to detect the clinical specimens. When the results on clinical samples detected by the new MALDI-TOF MS HPV test were compared with ones detected by the Roche Cobas 4800 HPV assay in terms of 14 HR HPV, the concordance was 80.1% (kappa coefficient, 0.60; 95% confidence interval [CI], 0.52–0.69). The discrepant results were resolved by sequencing and genotyping and suggests that the developed HR HPV assay is more sensitive and specific. Conclusions The new developed 18 HR HPV detection method based on MALDI-TOF MS platform is a high-throughput assay for the all 18 HR HPV genotypes and a powerful complement to current detection methods.
Keywords