Kidney and Dialysis (Apr 2023)
Screening Differential Expression Profiles of Urinary microRNAs in a Gentamycin-Induced Acute Kidney Injury Canine Model
Abstract
microRNAs (miRNAs) are promising biomarkers for different pathological models because of their stable and detectable characters in biofluids. Here, we collected urine samples from 5 beagle dogs on the 3th, 6th, and 12th day in an acute kidney injury (AKI) caused by gentamycin. miRNA levels were measured with high-throughput sequencing and the results were then differentially investigated. Gene Ontology (GO) and KEGG pathway analysis were performed to analyze potential target genes corresponding to the differentially expressed miRNAs (DE-miRNAs). Relationships between hub genes and DE-miRNAs were analyzed with STRING and Cytoscape. We identified 234 DE-miRNAs 3, 6, and 12 days after gentamycin treatment (p < 0.05). Top 10 up- and down-regulated candidate target genes of DE-miRNAs were predicted by overlapping TargetScan and miRanda results). GO and KEGG analyses for DE-miRNAs demonstrated that the DE-miRNAs target genes are mainly involved in kidney injury-related pathways, such as the insulin signaling pathway, oxytocin signaling pathway, and hedgehog signaling pathway. The network of miRNA-hub genes suggests that miR-452, miR-106a, and 106b participate in regulating the largest number of hub genes. We evaluated the miRNA signature via a canine model built by gentamycin-caused acute kidney injury. Our results represent a valuable resource for evaluating miRNAs as biomarkers of renal toxicity.
Keywords