Iron-Reduced Graphene Oxide Core–Shell Micromotors Designed for Magnetic Guidance and Photothermal Therapy under Second Near-Infrared Light
Orlando Donoso-González,
Ana L. Riveros,
José F. Marco,
Diego Venegas-Yazigi,
Verónica Paredes-García,
Camila F. Olguín,
Cristina Mayorga-Lobos,
Lorena Lobos-González,
Felipe Franco-Campos,
Joseph Wang,
Marcelo J. Kogan,
Soledad Bollo,
Claudia Yañez,
Daniela F. Báez
Affiliations
Orlando Donoso-González
Departamento Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile
Ana L. Riveros
Departamento Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile
José F. Marco
Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
Diego Venegas-Yazigi
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Libertador Bernardo O’Higgins #3363, Estación Central, Santiago 9170022, Chile
Verónica Paredes-García
Centro para el Desarrollo de La Nanociencia y la Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Libertador Bernardo O’Higgins #3363, Estación Central, Santiago 9170022, Chile
Camila F. Olguín
Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile
Cristina Mayorga-Lobos
Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile
Lorena Lobos-González
Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile
Felipe Franco-Campos
Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
Joseph Wang
Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
Marcelo J. Kogan
Departamento Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile
Soledad Bollo
Departamento Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile
Claudia Yañez
Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile
Daniela F. Báez
Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile
Core–shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. In this study, we present a novel core–shell micromotor that combines magnetic and photothermal properties. It is synthesized via the template-assisted electrodeposition of iron (Fe) and reduced graphene oxide (rGO) on a microtubular pore-shaped membrane. The resulting Fe-rGO micromotor consists of a core of oval-shaped zero-valent iron nanoparticles with large magnetization. At the same time, the outer layer has a uniform reduced graphene oxide (rGO) topography. Combined, these Fe-rGO core–shell micromotors respond to magnetic forces and near-infrared (NIR) light (1064 nm), achieving a remarkable photothermal conversion efficiency of 78% at a concentration of 434 µg mL−1. They can also carry doxorubicin (DOX) and rapidly release it upon NIR irradiation. Additionally, preliminary results regarding the biocompatibility of these micromotors through in vitro tests on a 3D breast cancer model demonstrate low cytotoxicity and strong accumulation. These promising results suggest that such Fe-rGO core–shell micromotors could hold great potential for combined photothermal therapy.