Molecularly Imprinted Polymers Using Yeast as a Supporting Substrate
Zhigang Wang,
Zhuangzhuang Dong,
Xiantao Shen,
Bin Wu
Affiliations
Zhigang Wang
School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
Zhuangzhuang Dong
State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
Xiantao Shen
State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
Bin Wu
Anheuser-Busch Management (Shanghai) Co., Ltd. Wuhan Branch, Wuhan 430051, China
Molecularly imprinted polymers (MIPs) have gained significant attention as artificial receptors due to their low cost, mild operating conditions, and excellent selectivity. To optimize the synthesis process and enhance the recognition performance, various support materials for molecular imprinting have been explored as a crucial research direction. Yeast, a biological material, offers advantages such as being green and environmentally friendly, low cost, and easy availability, making it a promising supporting substrate in the molecular imprinting process. We focus on the preparation of different types of MIPs involving yeast and elaborate on the specific roles it plays in each case. Additionally, we discuss the advantages and limitations of yeast in the preparation of MIPs and conclude with the challenges and future development trends of yeast in molecular imprinting research.